martes, 25 de febrero de 2014

El problema de Monty Hall

El problema de Monty Hall es un problema estadístico que surgió en el programa de televisión estadounidense Let's make a Deal (Hagamos un trato). Éste problema recibe el nombre de su presentador, Monty Hall.

Al margen de alguna ambigüedad en el planteamiento del programa, podemos expresarlo así:

1) En el concurso, había tres puertas numeradas. En una de ella se encontraba un premio importante, mientras que en cada una de las otras dos puertas había una cabra.



2) El concursante debía escoger una puerta entre las tres, aspirando a obtener el premio. Supongamos que escoge la puerta 1.

3) El presentador (Monty Hall) conocía en todo momento la puerta donde se encontraba el premio. Acto seguido, Monty Hall abría una de las dos puertas no seleccionadas en la que sabía que no se encontraba el premio, y aparecía por tanto una cabra. Supongamos que esta puerta fuese la 3.

4) El presentador preguntó al concursante si quería mantener su elección de la puerta 1 o quería cambiar a la puerta 2.


¿Qué es mejor, mantener nuestra primera elección o cambiar de puerta? ¿O es indiferente, ya que ambas tienen la misma probabilidad de contener el premio (50%)?

Os invitamos a que os penséis la respuesta. Posiblemente, os sorprenderá la solución.





SOLUCIÓN:

Aunque pueda parecerlo, la probabilidad de llevarse el premio quedándose con la puerta inicial o cambiándola no es la misma. De hecho, tenemos el doble de probabilidad de ganar si cambiamos de puerta. ¡Veámoslo!

En el caso inicial, tenemos que elegir entre tres puertas, por lo que la probabilidad de acertar donde está el premio al principio es de 1/3 (33,3%).  La probabilidad de que esté en las otras dos puertas es, por tanto, 2/3 (66,6%).

El bueno de Monty Hall abría, de la parte con probabilidad 2/3, la puerta en la que no estaba el premio. Así pues, si cambiamos, elegíamos la puerta premiada, en el caso de que la puerta premiada estuviese en un principio en la puerta 2 y 3.


Por tanto, la probabilidad de llevarnos el premio sin cambiar de puerta es de 1/3 (33,3%) mientras que si cambiamos de puerta es de 2/3 (66,6%).

Posiblemente, la lógica diría que la probabilidad de ganar era la misma cambiando o sin cambiar, pero la probabilidad dice que es el doble de probable que ganemos si cambiamos.

¿Y SI HUBIESEN 10 PUERTAS?

En el caso de tener 10 puertas, la probabilidad de llevarte el premio si cambias de puerta es aún mayor.

Imaginemos que hay que elegir una puerta del 1 al 10 y que se elige la primera.

La probabilidad de que a la primera elijamos la puerta con premio es 1/10 (10%). En cambio, la probabilidad de que la premiada esté entre las 9 restantes es de 9/10 (90%).

Si Monty Hall nos hiciese, de nuevo, el favor de abrir todas las puertas que sabe que no tienen premio de las 9 restantes (cerrando 8), si cambiásemos de puerta tendríamos el 90% de probabilidad de conseguir el premio, en lugar del 10% de antes.

Por lo tanto, ¡SIEMPRE CONVIENE CAMBIAR DE PUERTA!





lunes, 17 de febrero de 2014

Cuadrados de números acabados en 5

Disponemos de toda clase de dispositivos con la aplicación de la calculadora. Por eso, nos vendrá bien un sencillo y curioso procedimiento para ejercitar el cálculo mental. Se trata de hallar de manera rápida el cuadrado de números terminados en 5. (Especialmente útil en los menores de 100).
Sólo hemos de realizar tres pasos:
  1. Tomar los dígitos del número que queremos elevar al cuadrado, eliminando el 5 final.
  2. Multiplicar el número así formado por su consecutivo
  3. Formar el resultado añadiéndole al número anterior, al final, los dígitos 25.
Ejemplos:


a) 152
1 x (1+1) = 1 x 2 = 2
225 es el cuadrado de 15.


b) 352
3 x 4 = 12
1225 es el cuadrado de 35.


c) 752
7 x 8 = 56
5625 es el cuadrado de 55.


d) 1052
10 x 11= 110
11025 es el cuadrado de 105.


Sencillo, ¿no?

lunes, 10 de febrero de 2014

Te quiero PI

Os traemos este divertido corto: PIPAS. Éste corto de Manuela Moreno muestra como dos jóvenes llegan a la conclusión de que el novio de una de ellas le está siendo infiel por haberle dicho: "Te quiero Pi".

En tono de humor, este vídeo hace reflexionar sobre la poca cultura matemática de estas chicas, que no conocen el número π. En poco más de tres minutos, nos hará reflexionar y nos sacará más de una sonrisa.



Corto PIPAS from Manuela Moreno on Vimeo.

Ganador de los premios al mejor Guión y a la mejor dirección en la XI Edición del Notodofilmfest y nominado a los Goya.
Protagonizado por Marta Martín y Saida Benzal
Guión y Dirección Manuela Moreno
Foto: Jon Corcuera
Productora: MOMENTO